

    
      
          
            
  
ASCIIGenome: Text only genome viewer!

ASCIIGenome is a genome browser based on command line interface and designed
for console terminals.

Contents:



	Description
	Getting help

	How to cite

	Credits





	Installation
	Quick start

	With conda

	With Homebrew

	A little more detail

	Compiling the source code





	Input and output
	Input file formats
	Handling large files





	Setting a genome
	Reference sequence





	Output
	Formatting of reads and features

	Title lines





	Saving screenshots





	Usage
	Quick start

	Interactive commands





	Examples
	Video clips

	Why the command line

	Open and browse

	Finding & filtering stuff
	Advanced filtering with awk





	Batch and non-interactive mode

	Finding sequence motifs





	FAQ and miscellanea
	Can I change colour theme / Can I use my configuration?

	Can I turn off case sensitivity?

	Why reads and coverage in bam tracks sometimes disappear?

	Can I execute multiple commands inside -x/--exec or at the command prompt?

	How can I print the header of a VCF file?





	Command reference
	Navigation
	goto

	INT

	PERCENT

	plus +

	minus -

	f - forward

	b - backward

	ff

	bb

	]

	[

	zi

	zo

	extend

	l - left

	r - right

	p

	n

	next





	Find
	find

	seqRegex

	bookmark





	Display
	grep

	awk

	featureColor

	hideTitle

	genotype

	editNames

	dataCol

	print





	Alignments
	readsAsPairs

	filterVariantReads

	rpm

	samtools

	BSseq





	General
	setGenome

	setConfig

	explainSamFlag

	show

	recentlyOpened

	open

	reload

	dropTracks

	orderTracks

	posHistory

	history

	save

	sys

	q

	h















Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Description


  
    

    Installation
    

    
 
  

    
      
          
            
  
Installation


Quick start

Basically, download ASCIIGenome-X.Y.Z.zip from releases [https://github.com/dariober/ASCIIGenome/releases],
unzip, copy ASCIIGenome and ASCIIGenome.jar to a directory of your liking and that’s it.

For example, in the commands below replace version number with the latest from releases [https://github.com/dariober/ASCIIGenome/releases]:

wget https://github.com/dariober/ASCIIGenome/releases/download/vX.Y.Z/ASCIIGenome-x.y.z.zip
unzip ASCIIGenome-x.y.z.zip

cd ASCIIGenome-x.y.z/
chmod a+x ASCIIGenome
cp ASCIIGenome.jar /usr/local/bin/ # Or else in your PATH e.g. ~/bin/
cp ASCIIGenome /usr/local/bin/     # Or else in your PATH e.g. ~/bin/







With conda

ASCIIGenome is available as a bioconda package [https://bioconda.github.io/recipes/asciigenome/README.html]
and it can be installed with the conda package manager:

conda install -c bioconda asciigenome







With Homebrew

ASCIIGenome can also be installed through brew [http://brew.sh] / Linux Brew [https://github.com/Linuxbrew/brew], although it is still not an official package:

brew install https://raw.githubusercontent.com/dariober/ASCIIGenome/master/install/brew/asciigenome.rb







A little more detail

ASCIIGenome.jar requires Java 1.8+ and this should be the only requirement. There is virtually no installation needed as ASCIIGenome is pure Java and should work on most (all?) platforms. Download the zip file ASCIIGenome-x.x.x.zip from releases [https://github.com/dariober/ASCIIGenome/releases], unzip it and execute the jar file with:

java -jar /path/to/ASCIIGenome.jar --help





To avoid typing java -jar ... every time, you can put both the helper
script ASCIIGenome and the jar file ASCIIGenome.jar in the same directory in your PATH and execute with:

ASCIIGenome [options]






Note

This part below has nothing to do with ASCIIGenome specifically. These are just general instructions to add executable files to your PATH.


  
    

    Input and output
    

    
 
  

    
      
          
            
  
Input and output


Input file formats

File name extensions matter as file types are usually recognized by their extension. Reading remote files might require starting java with the option
-Djava.net.useSystemProxies=true  (see issue#6 [https://github.com/dariober/ASCIIGenome/issues/6]).

Unless noted otherwise remote URL links are supported. However, there are issues
reading tabix files on ftp servers (http are ok), see
htsjdk/issue#797 [https://github.com/samtools/htsjdk/issues/797]. Reading such files is
possible but ASCIIGenome will first download them locally.








	Format

	Extension

	Notes





	
	Annotation

	


	gtf [http://gmod.org/wiki/GFF2], gff [http://gmod.org/wiki/GFF3]

	.gtf .gff .gff3

	Can be gzipped (.gz)



	bigBed [http://genome.ucsc.edu/goldenPath/help/bigBed.html]

	.bb .bigBed

	


	bed [http://www.ensembl.org/info/website/upload/bed.html]

	Any

	Can be gzipped (.gz)



	
	Quantitative

	


	bigWig [https://genome.ucsc.edu/goldenpath/help/bigWig.html]

	.bigWig .bw

	


	bedGraph [https://genome.ucsc.edu/goldenpath/help/bedgraph.html]

	.bedGraph

	Can be gzipped (.gz)



	tdf [https://www.broadinstitute.org/igv/TDF]

	.tdf

	Useful for quantitative data on very large intervals.



	
	Other

	


	vcf [https://en.wikipedia.org/wiki/Variant_Call_Format]

	.vcf

	Can be gzipped (.gz)



	bam and sam [https://samtools.github.io/hts-specs/SAMv1.pdf]

	.bam

	BAMs without index and SAM files
are first sorted and indexed.
Remote URLs are painfully slow (same for IGV).






Note that the recognition of the extension is case insensitive, so .bigBed is the
same as .bigbed.

A notable format currently not supported is CRAM.


Tip

For input format specs see also UCSC format [https://genome.ucsc.edu/FAQ/FAQformat.html] and Ensembl [http://www.ensembl.org].
For guidelines on the choice of format see the IGV recommendations [https://www.broadinstitute.org/igv/RecommendedFileFormats].


  
    

    Usage
    

    
 
  

    
      
          
            
  
Usage


Quick start

The interface to ASCIIGenome should look familiar to those used to command line programs.  To see
the command line options use the usual syntax -h/--help as ASCIIGenome -h.

Open an indexed a bam file, as simple as:

ASCIIGenome aln.bam





Open with a reference genome:

ASCIIGenome -fa genome.fa aln.bam





In interactive mode use -h to browse available commands in interactive mode:

ASCIIGenome <options>
[h] for help: -h





And to see the help for a given command use cmd_name -h, for example:

[h] for help: next -h

next [-start] [track_id]
      Move to the next feature on track_id on *current* chromosome. `next` centers
      the window on the found feature and zooms out. This is useful for quickly browsing
      through annotation files of genes or ChIP-Seq peaks in combination with read
      coverage tracks (bigwig, tdf, etc.). The `-start` flag sets the window right
      at the start of the feature, without centering and zooming out.
      ...





See also Input and output.



Interactive commands

As there is no GUI, everything is handled thorough command line. Once ASCIIGenome is started type
a command and press ENTER to execute.

Some features of Unix console are enabled:


	Arrow keys UP and DOWN scroll previous commands.


	TAB auto-completes commands.


	ENTER without any argument repeats the previous command.


	Input after the // string is treated as comment and it is ignore (new in v1.13.0).




Examples:

[h] for help: ff <ENTER>              # Move forward
[h] for help: <ENTER>                 # Move forward again...
[h] for help: <ENTER>                 # ... and again
[h] for help: col <TAB>               # Is expanded to colorTrack
[h] for help: <ARROW UP>              # Shows previous command
[h] for help: goto chr1 // Hi there   # Comments are allowed
[h] for help: h <ENTER>               # Show help.





When track names are passed as arguments, it is not necessary to give the full
name as partial matching is enabled. This is handy since track names have an ID
appended as suffix which can be used in place of the full name, e.g. next
myLongfileName.bed#1 can be also typed as next #1.

These are just some functionalities to give an idea behind ASCIIGenome. See
Input and output for the individual commands available.





          

      

      

    

  

  
    

    Examples
    

    
 
  

    
      
          
            
  
Examples


Video clips

These short clips should give just a feel for how ASCIIGenome works in interactive
mode.


  
    

    FAQ and miscellanea
    

    
 
  

    
      
          
            
  
FAQ and miscellanea


Can I change colour theme / Can I use my configuration?

To change colour theme use the -c/--config command line option or the
interactive command setConfig. To make your own theme and set it as default,
use as template one of the files in the repository directory config [https://github.com/dariober/ASCIIGenome/blob/master/resources/config/], edit
it as desired and save it as ~/.asciigenome_config.

Examples:

ASCIIGenome -c metal ...    <- Use the "metal" built-in them
ASCIIGenome -c mytheme.conf <- Read configuration from this file
ASCIIGenome ...             <- No args to -c: Read file ~/.asciigenome_config or use default theme





For available colour names see the help in colorTrack or this cheat sheet [http://jonasjacek.github.io/colors/].



Can I turn off case sensitivity?

For command that do not explicitly enable turning on or off case sensitivity,
you can prepend (?i) to your regex to match in case insensitve
mode, e.g. (?i)bam will capture  foo.bam and foo.BAM. This is standard regular expression
syntax unrelated to ASCIIGenome.

Note that the command seqRegex by default is case insensitive, unless
the flag -c is set.



Why reads and coverage in bam tracks sometimes disappear?

When displaying bam files, ASCIIGenome is configured to disable the coverage and read tracks if
the window size is >100,000 bp. This is to prevent the browsing to become too slow. To display
such large windows  consider bigWig or tdf file format.



Can I execute multiple commands inside -x/--exec or at the command prompt?

Use the && to concatenate commands (similar to Unix syntax).  E.g.
colorTrack red && goto chr1:150000 && zo.



How can I print the header of a VCF file?

Assuming bcftools is available, use the sys command, for example:

sys bcftools view -H my_variants.vcf.gz | less





Of course you can further parse the header by piping to standard Unix tools. For
example, to exclude the contig lines use:

sys bcftools view -h mutect/WW00282.vcf.gz | grep -v '##contig' | less









          

      

      

    

  

  
    

    Command reference
    

    
 
  

    
      
          
            
  
Command reference

This is the documentation for the indvidual commands. The help documented here can be invoked also at the command prompt with command -h, for example to get the help for ylim:

ylim -h





Parameters in square brakets are optional and the default argument is indicated by the = sign. The syntax … indicate that the argument can be repeated multiple times. For example:

ylim min max [track_regex = .*]...





Means that ylim takes two mandatory arguments, min and max. The optional argument, track_regex, defaults to .* and can be repated multiple times.


Navigation


goto

goto chrom[:from[-to]] | chrom [from [to]]

Go to region chrom:from-to or to chrom:from or to the start of chrom.  The region may be separated by : and - or by spaces. The character ‘:’ is a shortcut for goto. Examples:

goto chr8:1-1000   # Go to region 1-1000 on chr8
goto chr8 1 1000   # Use spaces instead
goto chr8 1-1000   # Same as above
goto chr8 1 - 1000 # Same as above
goto chr8 1 1,000  # Comma in numbers is ok
goto chr8:10       # Go to position 10 on chr8
goto chr8          # Go to start of chr8
goto chr8 10 30 50 # Go to chr8:10-50
:chr8              # Colon ':' shortcut







INT

INT from [c | to]

Go to position from or to region from to on current chromosome. If a list of integers is given, the first and last are taken as from and to. This is handy to copy and paste intervals from the ruler above the prompt.


	c set the position of from at the center of the screen.


	to set the new window in the region delimited by from and to.




Examples:

10                   -> Will jump to position 10
10 1000              -> Go to region 10-1000
10 250 500 750 1000  -> Same as above again
750 c                -> Put the position 750 right in the middle
750c                 -> Same as '750 c' space is optional







PERCENT

PERCENT from [c | to]

Zoom into the current window delimited by given PERCENT of screen. PERCENT is a number in the range 0-1 mapping to the given percent of the current genomic window. Similar to the :code:INT command, one number moves the genomic window to the position located at PERCENT and two numbers will zoom into the region PERCENT-PERCENT.
This command is useful to quickly focus an a feature of interest, such as a ChIP-Seq peak or a variant.


	c set the position of from at the center of the screen.


	to set the new window in the region delimited by from and to.




Examples:

0.25      -> Jump to position at 25% of current screen.
.25       -> Same as above.
.25 .75   -> Zoom into the interval between 25-75% of current screen.
.25 c     -> Put the position at 25% of current screen right in the middle.
.25c      -> Same as '.25 c' (space is optional).







plus +

+ INT [k|m]

Move forward by INT bases. Suffix K/M recognized.  Suffixes k (kilo) and M (mega) are expanded to x1000 and x1,000,000. Examples:

+2m
+10k
+10.5k







minus -

- INT [k|m]

Move backwards by INT bases. Suffix K/M recognized.  Suffixes k (kilo) and M (mega) are expanded to x1000 and x1,000,000.
Examples:

-100
-10k
-10.5m







f - forward

f [NUM=0.1]

Move forward NUM times the size of the current window, 1/10 by default.



b - backward

b [NUM=0.1]

Move backward NUM times the size of the current window, 1/10 by default



ff

ff

Move forward by 1/2 of a window. A shortcut for f 0.5



bb

bb

Move backward by 1/2 of a window. A shortcut for b 0.5



]

] INT=1

Move forward by INT screen columns Same as [ but moves forward. See [ for details



[

[ INT=1

Move backwards by INT screen columns. The [ character can be repeated and each [ will move by one column. Examples:

[   -> Move one screen column
[[[ -> Move three columns
       [ 3 -> Same as above
       [3  -> Same as above (space is optional)







zi

zi [INT = 1]

Zoom in INT times. Each zoom halves the window size.  To zoom quickly use INT= 5 or 10 e.g. zi 10



zo

zo [INT = 1]

Zoom out INT times. Each zoom doubles the window size.  To zoom quickly use INT= 5 or 10 e.g. zo 10



extend

extend [mid|window] [INT left] [INT right]

Extend the current window by INT bases left and right.


	window (default): Extend the current window left and right by INT bases


	mid The new window is given by the midpoint of the current window plus and minus INT bases left and right.




If only one INT is given it is applied to both left and right. Negative INTs will shrink instead of extend the window.



l - left

l

Go to the Left half of the current window.  Alternate the left and right command to quickly focus on a point of interest.



r - right

r

Go to the Right half of the current window.  Alternate the left and right command to quickly focus on a point of interest.



p

p

Go to the previous visited position.  Similar to the back and forward arrows of an Internet browser.



n

n

Go to the next visited position.  Similar to the back and forward arrows of an Internet browser.



next

next [-back] [-start] [-c] [-zo INT=5] [track]

Move to the next feature not overlapping the current coordinates.  By default next centers the window on the next feature and zooms out.


	-back Search backwards. I.e. move to next feature on the left of the current position.


	-start Set the window right at the start of the feature, without centering and zooming out.


	-c Set the window so that the start of the feature is right in the middle of the window. Useful to browse small features such as SNV and indels.


	-zo INT Zoom out INT times after having found the next feature.   Ignored if the -start flag is set. If <= 0 the window spans exactly the feature coordinates.   Default 5.


	track Track to search for next feature. Default to the first annotation track found.




next starts searching immediately after the current window and loops thourgh each chromosome until a feature is found.




Find


find

find [-all] [-c] [-F] regex [track]

Find the first record in track containing regex. The search for regex starts from the end of the current window (so the current window is not searched) and moves forward on the current chromosome. At the end  of the current chromosome move to the next chromosomes and then restart at  the start of the initial one. The search stops at the first match found. If track is omitted the first interval track found is searched.


	-all: Return the region containing all the regex matches.


	-c Match in CASE SENSITIVE mode. Default is case insensitive (changed in v1.12).


	-F: Interpret regex as a fixed, literal string instead of as a regex.




Examples:

find -all ACTB genes.gtf -> Find all the matches of ACTB. Case ignored
find -c 'ACTB gene'      -> Find the first match of 'ACTB gene'. Case sensitive





Use single quotes to define patterns containing spaces.



seqRegex

seqRegex [-iupac] [-c] [regex]

Find regex in reference sequence and show matches as an additional track.  Options:


	regex Regex to search. If missing the seq regex track is removed.


	-iupac Enable the interpretation of the IUPAC ambiguity code. NB: This option simply converts IUPAC chracters to the corresponding regex.


	-c Enable case-sensitive matching. Default is to ignore case.




Examples:

seqRegex ACTG        -> Case insensitive, actg matched
seqRegex -c ACTG     -> Case sensitive, will not match actg
seqRegex -iupac ARYG -> Interpret (converts) R as [AG] and Y as [CT]
seqRegex             -> Disable regex matching track





To save matches to file, see the print command. This command is ignored if the reference fasta sequence is missing.



bookmark

bookmark [-d] [-n name] [-print] [> file] [chrom:from-to]

Creates a track to save positions of interest. Without arguments, add the current position to the bookmark track. Options:


	chrom:from-to Bookmark this region. If chrom is omitted, use the current chromosome.


	-d Remove the bookmark at coordinates [chrom:from-to].


	-n name Use name for this new bookmark.


	-print prints to screen the list of current bookmarks.


	> file saves the bookmark track to file.




Examples:

bookmark              -> Add the current window to bookmarks.
bookmark 100          -> Bookmark position 100 on current chrom
bookmark 100-110      -> Bookmark position 100-110 on current chrom
bookmark chr1:100     -> Bookmark position chr1:100
bookmark -d chr1:100  -> Delete bookmark at chr1:100
bookmark > books.txt  -> Save to file books.txt
bookmark -print       -> Show table of bookmarks








Display


grep

grep [-i = .*] [-e = ''] [-c] [-F] [-v] [track_regex = .*]...

Similar to grep command, filter for features including or excluding patterns. Options:


	-i regex  Show features matching this regex.


	-e regex Exclude features matching this regex.


	-c Match in CASE SENSITIVE mode. Default is case insensitive (changed in v1.12).


	-F Interpret regex in -i and -e as a fixed, literal string instead of as a regex.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex


	track_regex Apply to tracks matched by track_regex.




NOTES


	Use single quotes to delimit patterns containing spaces e.g. -i 'ACTB gene'




Regex -i and -e are applied to the raw lines as read from source file and it is applied only to annotation tracks (GFF, BED, VCF, etc). For example:

grep -i RNA -e mRNA gtf gff





Will show the rows containing ‘RNA’ but will hide those containing ‘mRNA’, applies to tracks whose name matches ‘gtf’ or ‘gff’.
With no arguments reset to default: grep -i .* -e ^$ .* which means show everything, hide nothing, apply to all tracks.



awk

awk [-off ...] [-F sep_re] [-v VAR=var] [-V] '<script>' [track_regex = .*]...

Advanced feature filtering using awk syntax. awk offers finer control then grep to filter records in tabular format.

Awk is column oriented. Awk splits each line into a list using a given regular expression as delimiter (default delimiter is the TAB character). To access an item, i.e. a column, use the syntax $n where n is the position of the item in the list, e.g. $3 will access the third field (i.e. 3rd column). The variable $0 holds the entire line as single string.

Awk understands numbers and mathematical operators. With awk you can filter records by numeric values in one or more fields since numbers are handled as such. You can also perform arithmetic operations and filter on the results.

OPTIONS


	-off track_re ...  Turn off awk filtering for tracks captured by the list of regexes.


	-F <sep_re> Use regular expression <sep_re> as column separator. Default is ‘t’ (tab). To separate on white space use e.g. ‘b’ (backspace) or ‘s’ (any white space). Do not use ‘ ‘.


	-v VAR=var Pass to awk script the variable VAR with value var. Can be repeated.


	script The awk script to be executed. Must wrapped in single quotes.


	-V Invert selection: apply changes to the tracks not selected by list of track_regex




ADDITIONAL FEATURES

Function get(...) can indistinctly be applied to GTF, GFF, SAM records and to INFO and FORMAT fields in VCF files. Double quoting around <tag> is optional.


	get(tag) on GTF




Return the value of tag attribute.


	get(tag, [value_idx]) on GFF




Return the value of tag attribute. If the attribute contains multiple values return the value at index value_idx (1-based). If value_idx is missing (as default), return the entire value as it is.


	get(tag) on SAM




Return the value of the given sam tag.


	get(tag, [value_index]) on VCF




Return the value of the given INFO tag. If the tag contains multiple values, optionally return only the value at index value_index. If necessary, prepend ‘INFO/’ to tag to disambiguate it from FORMAT tags or if the header does not contain this tag. If the tag is of type ‘Flag’, return 1 if present, 0 otherwise.


	get(tag, [sample_idx], [value_idx]) on VCF




Return the value of the FORMAT tag for sample index sample_idx (default to 1, first sample). If the tag contains multiple values, optionally return the value at index value_idx. If necessary, prepend ‘FMT/’ to tag to disambiguate it from INFO tags or if the header does not contain this tag.  If the tag is of type ‘Flag’, return 1 if present, 0 otherwise.


	Column headers




The following variables are replaced by the appropriate column indexes, so they can be used to easily select columns. Make sure the track types are selected to be compatible with the headers.


	bam tracks:

$QNAME, $FLAG, $RNAME, $POS, $MAPQ, $CIGAR, $RNEXT, $PNEXT, $TLEN, $SEQ, $QUAL







	vcf tracks:

$CHROM, $POS, $ID, $REF, $ALT, $QUAL, $FILTER, $INFO, $FORMAT







	gtf and gff tracks:

$SEQNAME, $SOURCE, $FEATURE, $START, $END, $SCORE, $STRAND, $FRAME, $ATTRIBUTE







	bed tracks:

$CHROM, $START, $END, $NAME, $SCORE, $STRAND, $THICKSTART, $THICKEND, $RGB, $BLOCKCOUNT, $BLOCKSIZES, $BLOCKSTARTS









EXAMPLES

Note the use of single quotes to wrap the actual script and the use of double quotes inside the script.


	Filter for lines where the 4th column is between 10 and 100. Apply only to tracks matching ‘.gtf’ or ‘.gff’:

awk '$4 > 10 && $4 <= 100' .gtf .gff







	Filter for either perfect a match or by matching a regex on 3rd column. Apply to all tracks. The second example matches regex on the entire line (similar to grep), The third example also requires features to be on + strand:

awk '$3 == "exon" || $3 \  ".*_codon"'

awk '$0 \  ".*_codon"'

awk '($3 == "exon" || $3 \  ".*_codon") && $7 == "+"'







	Filter for features size (assuming bed format) and for values after log10 transformation. For log10 we need to change base using ln(x)/ln(10):

awk '($3 - $2) > 1000 && (log($4)/log(10)) < 3.5'







	Remove awk filter for tracks captured by .gff and .gtf:

awk -off .gtf .gff







	Return bam records where NM tag (edit distance) is > 0. Double quotes around NM are optional:

awk 'get(NM) > 0' .bam







	Filter vcf records by FORMAT tag. Suppose tag AD in the second sample is 63,7:

awk 'get(AD, 2) ...' my.vcf      # get() returns string '63,7'
awk 'get(AD, 2, 1) ...' my.vcf   # get() returns 63
awk 'get(AD, 2, 2) ...' my.vcf   # get() returns 7
awk 'get(FMT/AD, 2) ...' my.vcf  # If AD is also in INFO or missing in header







	Using header variables:

awk '$FEATURE \  "CDS" && $START > 1234' my.gff









With no args, turn off awk for all tracks.

NOTES & LIMITATIONS


	This is a java implementation of awk and it is independent on whether awk is on the local system. It should behave very similar to UNIX awk and therefore it has lots of functionalities. In fact, awk is a programming language in itself, search Google for more. The original code is from https://github.com/hoijui/Jawk


	Use awk only to filter features, do not use it to edit them. If features are changed by the awk script than nothing will be retained. This is because the awk command first collects the output from awk, then it matches the features in the current window with those collected from awk.


	Each line is processed independently of the others as a separate awk execution. This means that you cannot filter one line on the bases of previous or following lines.


	This awk is slow, about x5-10 times slower than UNIX awk. For few thousand records the slowdown should be acceptable. Other things being equal, use grep instead.


	The default delimiter is TAB not any white space as in UNIX awk.


	An invalid script throws an ugly stack trace to stderr. To be fixed.






featureColor

featureColor [-r/-R expression color] [-v] [track_regex = .*]...

Set colour for features captured by expression.  This command affects interval feature tracks (bed, gff, vcf, etc) and overrides the default color for the lines captured by the expression. Expression is a regex or an awk script (autodetermined). It is useful to highlight features containg a string of interest, such as ‘CDS’ in gff files, or features where a numeric field satisfy a filter.

Options:

-r <expression> <color> Features matching expression will have color color. The expression is interpreted as regex or as an awk script and it is applied to the raw lines as read from file. This option takes exactly two arguments and can be given zero or more times.

-R <expression> <color> Same as -r but sets color for features NOT matched by regex.

-v Invert selection: apply changes to the tracks not selected by list of track_regex

[track_regex] Apply to tracks captured by this list of regexes.

Example:

featureColor -r CDS plum2 -r exon grey
featureColor bed         -> Reset to default the track matching 'bed'
       featureColor -R CDS grey -> Grey all features except those matching CDS

Color blue where 9th field is > 3; color red where 9th is > 6
featureColor -r '$9 > 3' blue -r '$9 > 6' red





Colors can be specified by name, name prefix, or integer in range 0-255. Available colours:here [http://jonasjacek.github.io/colors/]

Example:

colorTrack cyan1 ts.*gtf ts.*bam
colorTrack 40                   <- By INT
colorTrack darkv                <- Same as darkviolet







hideTitle

hideTitle [-on | -off] [-v] [track_regex = .*]...

Set the display of the title line matched by track_regex.  Without argument -on or -off toggle between the two modes for all tracks matched by the list of regexes.

-v Invert selection: apply changes to the tracks not selected by list of track_regex



genotype

genotype [-n 10] [-s .*] [-r pattern rplc] [-f expr] [-v] [track_regex = .*]...

Customise the genotype rows printed under the VCF tracks.

-n Display up to this many samples (rows). -1 for no limit.

-s Select samples matching this regex.

-r Edit sample names to replace <pattern> with <replacement>. Names are edited only for display. To completely hide names replace with empty string -r .* ''. To restore original names use a regex matching nothing e.g. ‘^$’

-f Filter samples using an expression in javascript syntax. See below for details.

-v Invert selection: apply changes to the tracks not selected by list of track_regex

FILTER EXPRESSION

Samples can be filtered by applying arbitrary expressions to the VCF records. The VCF fields of a sample are accessed using the syntax {TAG}.

TAG is one of the fixed fields: CHROM, POS, ID, REF, ALT, QUAL, FILTER, or one of the INFO or FORMAT tags. In case of ambiguity, the prefix ‘INFO/’ or ‘FMT/’ should be used to identify the target tag (e.g. {FMT/ID} will access the ID field in FORMAT rather than the ID in the header).

The value(s) in a TAG are converted to the appropriate data type (Integer, String, etc). Tags holding more than one value are returned as arrays whose individual values should be accessed using the syntax [index]. E.g. {ALT}[0] will access the first alternate allele.

Note that the ALT and FILTER fields are always arrays, even if only one allele is present.

After substitution of the {TAG} placeholders with the actual values, the expression string is evaluated as a javascript script so any valid JS code is allowed including the common operators: > < == != && ||.

Importantly, the result of the expression must be a boolean, i.e. it must evaluate to true or false.

For each sample, the expression is evaluated for each VCF record in the current window and if ANY record returns true, the sample is filtered-in. To apply the filter to specific records either include only those records using e.g. commands grep or awk or make the expression more selective, e.g. by including the POS field.

As elsewhere in ASCIIGenome, if the argument (expression) contains spaces it must be enclosed in single quotes and single quotes inside the expression must be escaped. To remove the expression filter pass a blank string as argument -f ' ' (note the white space between single quotes).

The following tags can be used to filter on the genotype. When substituted, they evaluate to true according to the sample genotype. Testing the {GT} tag, e.g. {GT} == "0/1", achieves a similar result and gives more control but using these tags is less error prone:


	{HOM} genotype is homozygote.


	{HET} genotype is heterozygote.


	{HOM_REF} genotype is homozygote reference.


	{HOM_VAR} homozygote for an ALT allele.


	{HET_NON_REF} heterozygote and all alleles are non-reference.


	{CALLED} at least one allele is not a missing value (‘.’ in vcf).


	{NO_CALL} No allele is called (e.g. it appears as ./. in vcf).


	{MIXED} genotype is comprised of both calls and no-calls.




Examples of filters:

genotype -f '{DP} > 30' -> Display samples having DP > 30
genotype -f '{DP} > 30 && {ID} == "rs99"' -> Select also for ID
genotype -f '{FMT/XA} > 30 && {INFO/XA} == "foo"' -> Disambiguate tags
genotype -f '{ALT}[0] == "C"'  -> Access the first ALT allele
genotype -f '{HOM_REF} == false' -> Discard if homozygote ref.







editNames

editNames [-t] [-v] <pattern> <replacement> [track_re=.*]...

Edit track names by substituting regex pattern with replacement. Pattern and replacement are required arguments, the default regex for track is ‘.*’ (i.e. all tracks).


	-t (test) flag shows what renaming would be done without actually editing the names.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex




Use ‘’ (empty string in single quotes) to replace pattern with nothing. Examples: Given track names ‘fk123_hela.bam#1’ and ‘fk123_hela.bed#2’:

editNames fk123_ ''       -> hela.bam#1, hela.bed#2
editNames fk123_ '' bam   -> hela.bam#1, fk123_hela.bed#2
editNames _ ' '           -> fk123 hela.bam#1,  fk123 hela.bed#2
editNames ^.*# cells      -> cells#1, cells#2
editNames ^ xx_           -> xx_fk123_hela.bam#1, xx_fk123_hela.bed#2 (add prefix)







dataCol

dataCol [-v] [index = 4] [track_regex = .*]...

Select data column for bedgraph tracks containing regex.  First column has index 1. This command applies only to tracks of type bedgraph.

-v Invert selection: apply changes to the tracks not selected by list of track_regex

For example, use column 5 on tracks containing #1 and #3:

dataCol 5 #1 #3







print

print [-n INT] [-full] [-off] [-round INT] [-hl re] [-esf] [-v] [-sys CMD] [track_regex = .*]... [>|>> file]

Print lines for the tracks matched by track_regex.  Useful to show exactly what features are present in the current window. Features are filtered in/out according to the grep command. Options:


	track_regex Apply to tracks matched by one or more of these regexes.


	-n INT=10 Print up to this many lines, default 10. No limit if < 0.


	-clip Clip lines longer than the screen width. This is the default.


	-full Wrap lines longer than the screen width.


	-round INT Round numbers to this many decimal places. What constitutes a number is inferred from context. Default 3, do not round if < 0.


	-hl regex Highlight substrings matching regex. If regex matches a FORMAT tag in a VCF record, highlight the tag itself and also the sample values corresponding to that tag. Alternatively, regex may be a comma separated list of column indexes to highlight. Indexes are recognized by the $ prefix. E.g. -hl '$1, $3, $10' will highlight columns 1, 3, 10.


	-esf Explain SAM Flag. Add to SAM flag an abbreviated description.


	-off Turn off printing.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex


	-sys Parse the raw output with the given system command(s). Use -sys null to turn off the system commands. These commands are executed by bash so bash is expected to be available on the system. The commands should read from stdin and write to stdout, this is usually the case for Unix commands like cut, sort, etc. The command string must be enclosed in single quotes, single quotes inside the string can be escaped as ‘ (backslash-quote)


	> and >> Write output to file. > overwrites and >> appends to existing file. The %r variable in the filename is expanded to the current genomic coordinates. Writing to file overrides options -n and -off, lines are written in full without limit.




Without options toggle tracks between OFF and CLIP mode.

Examples:

print                        -> Print all tracks, same as `print .*`
print -off                   -> Turn off printing for all tracks
print genes.bed >> genes.txt -> Append features in track(s) 'genes.bed' to file
print -sys 'cut 1-5 | sort'  -> Select columns with `cut` and then sort
print -sys null              -> Turn off the execution of sysy commands








Alignments


readsAsPairs

readsAsPairs [-on | -off] [-v] [track_regex = .*]...


	Show SAM records as pairs.

	If set, properly paired reads in the current window are showed joined up by tildes.






	-on|-off Turn on/off the pairing mode. Or toggle between the two modes if none of these flags is set.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex


	[track_regex = .*]... Apply to read tracks captured by these regexes.






filterVariantReads

filterVariantReads [-r from/to] [-all] [-v] [track_regex = .*]...


	Filter reads containing a variant in the given interval.

	filterVariantReads selects for reads where the read sequence mismatches with the reference sequence in the given interval on the current chromosome. This command is useful to inspect reads supporting a putative alternate allele at a variant site.





NOTES


	filterVariantReads requires a reference fasta sequence to be set, e.g. via the command line option -fa <ref.fa> or with command setGenome.


	The CIGAR string determines a mismatch between read and reference. Consequently, there may be an inconsistency between variant positions in reads and positions in a VCF file if some normalization or indel realignment has been performed by the variant caller that generated the VCF. In such cases consider enlarging the target interval.


	The position (POS) of deletions in VCF files refer to the first non-deleted base on the reference. Therefore, the interval to -r should be POS+1 to filter for reads supporting a deletion (but see also the previous point).




OPTIONS


	-r region Select reads mismatching in this interval. region can be given as: a single position, a position plus and/or minus an offset, an interval. See examples.


	-all Return all reads intersecting the -r interval, not just the variant ones.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex


	[track_regex = .*]... Apply to read tracks captured by these regexes.




EXAMPLES:

filterVariantReads -r 1000+10   <- From 1000 to 1010
filterVariantReads -r 1000-10   <- From 990 to 1000
filterVariantReads -r 1000+/-10 <- From 990 to 1010
filterVariantReads -r 1000:1100 <- From 1000 to 1100
filterVariantReads -r 1000 vars.*vcf <- Apply to tracks captured by `vars.*vcf`
filterVariantReads              <- Remove filter for all tracks







rpm

rpm [-on | -off] [-v] [track_regex = .*]

Set display to reads per million for BAM and TDF files.


	-on | -off Set mode on/off. Without arguments toggle between on and off.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex


	track_regex List of regexes to capture target tracks.






samtools

samtools [-f INT=0] [-F INT=4] [-q INT=0] [-v] [track_re = .*] ...

Apply samtools filters to alignment tracks captured by the list of track regexes. Useful for stranded RNA-Seq and BS-Seq: bit flag 4096 is selects reads mapping to TOP STRAND.


	-F Filter out flags with these bits set. NB: 4 is always set.


	-f Require alignment to have these bits sets.


	-q Require alignments to have MAPQ >= than this.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex




Examples:

samtools -q 10           -> Set mapq for all tracks. -f and -F reset to default
samtools -F 1024 foo bar -> Set -F for all track containing re foo or bar
samtools -f 4096         -> Select TOP STRAND reads
samtools -F 4096         -> Select BOTTOM STRAND reads
samtools                 -> Reset all to default.







BSseq

BSseq [-on | -off] [-v] [track_regex = .*]...

Set bisulfite mode for read tracks matched by regex. In bisulfite mode, the characters M and m mark methylated bases (i.e. unconverted C to T) and U and u are used for unmethylated bases (i.e. C converted to T). Upper case is used for reads on  forward strand, small case for reverse.


	-on | -off Set mode. Without arguments toggle between on and off.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex


	track_regex List of regexes to capture target tracks.




Ignored without reference fasta sequence.




General


setGenome

setGenome fasta|bam|genome

Set genome and reference sequence. The genome, i.e. the list of contig names and sizes, can be extracted from the fasta reference, from a bam file or from a genome identifier (e.g. hg19). If a fasta file is used also the reference sequence becomes available.

Without arguments, set the genome using the last opened fasta file, if any and if compatible with the current tracks.



setConfig

setConfig <file|tag> | <key> <value>

Set configuration arguments.

If only one argument is given then the entire settings are replaced. Configuration can be set with one of the built-in themes: ‘black_on_white’, ‘white_on_black’, ‘metal’. Alternatively, configuration can be read from file. For examples files see
https://github.com/dariober/ASCIIGenome/blob/master/resources/config/

If two arguments are given, they are taken as a key/value pair to reset.

Examples:

setConfig metal
setConfig /path/to/mytheme.conf
       setConfig max_reads_in_stack 20000 <- Reset this param only





Parameters and current settings:

background                         231   # Background colour
foreground                         0     # Foreground colour
seq_a                              12    # Colour for nucleotide A
seq_c                              9     # Colour for nucleotide C
seq_g                              2     # Colour for nucleotide G
seq_t                              11    # Colour for nucleotide T
seq_other                          0     # Colour for any other nucleotide
shade_low_mapq                     249   # Colour for shading reads wit low MAPQ
methylated_foreground              231   # Foreground colour for methylated C
unmethylated_foreground            231   # Foreground colour for unmethylated C
methylated_background              9     # Background colour for methylated C
unmethylated_background            12    # Background colour for unmethylated C
title_colour                       0     # Default Colour for titles
feature_background_positive_strand 147   # Colour for features on forward strand
feature_background_negative_strand 224   # Colour for features on reverse strand
feature_background_no_strand       249   # Colour for features without strand information
footer                             12    # Colour for footer line
chrom_ideogram                     0     # Colour for chromosome ideogram
ruler                              0     # Colour for ruler
max_reads_in_stack                 2000  # Max number of reads to accumulate when showing read tracks
shade_baseq                        13    # Shade read base when quality is below this threshold
shade_structural_variant           33    # Background colour for reads suggesting structural variation
highlight_mid_char                 true  # Highlight mid-character in read tracks?
nucs_as_letters                    true  # Show read nucleotides as letters at single base resolution?
show_soft_clip                     false # NOT IN USE YET - Show soft clipped bases in read tracks?







explainSamFlag

explainSamFlag INT [INT ...]

Explain the list of bitwise SAM flags.  Decode one or more sam flags to human readable form and print them as a table. Similar to https://broadinstitute.github.io/picard/explain-flags.html



show

show <arg>

Show or set features to display.  The argument arg takes the following choices:


	genome: Show chromosomes and their sizes as barplot provided a genome file is available.


	trackInfo: Show information on tracks.


	gruler: Toggle the display of the genomic coordinates as ruler.


	pctRuler: Toggle the display of the column number of the terminal (useful for navigation within the current genomic window).




arg can be just a prefix of the argument name, e.g. show ge will be recognized as show genome.



recentlyOpened

recentlyOpened [-grep = .*]

List recently opened files.  Files are listed with their absolute path.


	-n INT Return only the last INT files.


	-grep <pattern> Filter for files (strings) matching pattern. Use single quotes to define patterns containing spaces, e.g. -grep 'goto chr1'.






open

open [files | URLs | indexes]...

Add tracks from local or remote files.  The list of files to open can be a list of file names or URLs. For local files, glob characters (wildcard) are expanded as in Bash (but note that currently globs in directory names are not expanded.)

Alternatively, the files to open can be given as numeric indexes of recently opened files (see command recentlyOpened). The last opened file has index 1, the second last 2, etc.

Examples:

open peaks.bed genes.*.gtf        <- Note use of wildecard
open http://remote/host/peaks.bed <- From URL
open 1 2 3                        <- The three most recent files







reload

reload [track_regex = .*]...

Reload track files.  reload is useful when an input track file is edited by external actions and you want to reload it in the current session. This is easier than dropping and re-opening tracks with dropTracks … && open … since track formattings and filters are preserved.

A track is dropped if it cannot be reloaded, for example when the sequence disctionary has become incompatible with the current one.

Examples:

reload       <- reload all tracks
reload .bam  <- reload files matching '.bam'







dropTracks

dropTracks [-t] [-v] track_regex [track_regex]...

Drop tracks matching any of the listed regexes. * -t (test) flag only shows which tracks would be removed but do not remove them.


	-v Invert selection: apply changes to the tracks not selected by list of track_regex




Examples:

dropTracks bam







orderTracks

orderTracks [track_regex]...

Reorder tracks according to the list of regexes or sort by name. Not all the tracks need to be listed, the missing ones follow the listed ones in unchanged order. Without arguments sort track by tag name.
For example, given the track list: [hela.bam#1, hela.bed#2, hek.bam#3, hek.bed#4]:

orderTracks #2 #1   -> [hela.bed#2, hela.bam#1, hek.bam#3, hek.bed#4]
orderTracks bam bed -> [hela.bam#1, hek.bam#3, hela.bed#2, hek.bed#4]
orderTracks . bam  -> 'bam' tracks go last
orderTracks         -> name sort [hela.bam#1, hela.bed#2, hek.bam#3, hek.bed#4]







posHistory

posHistory [-n INT=10]

List the visited positions. Recorded positions include the current and the previous sessions of ASCIIGenome.

-n INT Show only the last INT positions. Show all if <= 0.



history

history [-n INT] [-grep = .*]

List the executed commands.  Commands executed in previous sessions of ASCIIGenome are in /.asciigenome_history


	-n INT Return only the last INT commands.


	-grep <pattern> Filter for commands (strings) matching pattern. Use single quotes to define patterns containing spaces, e.g. -grep 'goto chr1'






save

save [>>] [filename = chrom_start_end.txt']

Save screenshot to file as text or pdf format. The default file name is generated from the current coordinates and the default format is plain text. If the file name has extension ‘.pdf’ then save as pdf. To append to an existing file use >>. The string %r in the file name is replaced with the current coordinates. Examples:

save mygene.txt    -> Save to mygene.txt as text
save >> mygene.txt -> Append to mygene.txt
save               -> Save to chrom_start-end.txt as text
save .pdf          -> Save to chrom_start-end.pdf as pdf
save mygene.%r.pdf -> Save to mygene.chr1_100-200.pdf as pdf







sys

sys [-L] command

Execute a system command. By default the given command is executed as a string passed to Bash as bash -c string. With the -L option the command is executed literally as it is. Note that with the -L option globs are not expanded by Java. Examples:

sys pwd                          <- Print working directory name
sys ls *.bam                     <- List files ending in .bam
sys bcftools view -h vars.vcf.gz <- Print vcf header







q

q

Quit



h

h

help, h, -h, and ? show this help.
For help on individual commands use one of:

command -h
?command
help command





e.g. ylim -h






          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  
_static/up.png





_images/composite.png
1- =21M- =4 1M--
Nfkb_TnfalggrabPk.narrowPeak.gz#1; Incl .* Excl

Nfkb_TnfalggrabSig.bigWig#2; ylim(0.0 auto]; range[0.0 26.44)

Pol2 IggmusPk.narrowPeak.gz#3; Incl .* Excl *$ N
Pol2_ IggmusSig.bigWig#d; ylim[0.0 auto]; range[0.0 139.46]

“Exel s N: 0

hgl9_genes.gtf.gz#5; Incl .

5595800 5596249 5596698 5597146 5597595

5598044
chr7:5595800-5602712; 6,913 bp; 44.6 bp/char; Mem: 281 MB

5598493 5598942 559,

N\

83M|

5632155 5632604 5633053 g
char; Mem: 239 MB

'TGCTTGCTGATCCACATCTGCTGGAAGGTGGACAGCGAGGCC GGATGGAGCCGCCG]
tgcttgctgatccacatetgetggaaggtggacagegaggecagg  ggagecgecg|
TGCTTGCTGATCCACATCTGCTGGAAGGTGGACAGCGAGGCCAGGATGGA CCGCCG
tgcttgetgatccacatetgetggaaggtggacagegaggecaggatggagecy
TGCTTGCTGATCCACATCTGCTGGAAGGTGGACAGCGAGGCCAGGATGGAGCCGCC
tgcttgctgatecacatctectggaaggtggacagegaggecaggatggagecgee
tgcttgetgatecacatetgetggaaggtggacagegaggecaggatggagecgecg|
ccacatctgetggaaggtggacagegaggecaggatggagecgecg|
TGGAAGGTGGACAGCGAGGCCAGGATGGAGCCGCCG)

tg aaggtggacagcgaggecaggatggageegecy
tgct GCGAGGCCAGGATGGAGCCGCCG]
tgctte GCCAGGATGGAGCCGCCG)
tgcttgetg CAGGATGGAGCCGCCG
tgcttgctgatccacatctyg Geeeees
"TGCTTGCTGATCCACATCTGCT ccgeeg|
TGCTTGCTGATCCACATCTGCTGGAA cGeeg
TGCTTGCTGATCCACATCTGCTGGAAGGTGGAC cgeeg

5567393

chr7:5567393-5567547;

gecggactegtcatactectgettgetgatccacatetgetggaaggtggacagegaggecaggatggagecge
cggactcgtcatactcectgettgetgatccacatctgctggaaggtggacagegaggecaggatggagecgecg|
5567423

1.0 bp/char; Mem: 208 MB

5567403 5567413

155 bp;

tgcttgetgatccacatctgetggaaggtggacagega

5567433 5567443 5567453 5567463

N\

5567473 55|






_images/ex3.png
hh_hek_8911-1808 FAIRE. 197 Each . =

FIR14S-146 0 Ke_atac_hacat.aT; Each . = 1.053;

hvia

h19.gencode_genes_vi9.gts

9912313 9912057 omuiser 9916245 9914889
ehriB:9012313-9922553; 18,241 bp; 640 bp/char

hg19. gencode_genes_v19.gt1.gz
9894609 9894931 9895253

[h] for hetp: I

CTm

9895575

Wax scorer 20,647

95897 9896219 9896541
Chr18:9894609-0899720; 5,121 bp; 32.0 bp/char; Filters: -q 0 -1 8

~F a7 Hen:

9896863 9997185
301 e

9897507 9897829

51 9898473

98795 9899117 9899439

o ceptns 0.0n;

ooohen  Saeenis sseeeds  sseeass  sseeeds 556
1.8 Sp/chars Filters: —q 8 -1 & -F 4 Nea: 1027 M3

eonr

Saeons






_images/bs.chr7_5560313-5560467.png
4

, c..l..m ..... I CI ..... c. ................... I ...................... g.... 0. 0 %...........

,,,,, B M. [UFRU R U U UUURUR T P R () PP III ................... .g.
. ALL.Clly...... ...... [U II.I Ayl ,,,,,,,,,,,,,,,,,,,,,, Bufu
B..9... coenn.. g..-... U P . UUUU .o ,,,,,,,,uu,,,,,u,, Bu

P L1 e U P ....U ......... I U e U U .

Weeeennnn. A.g...A.. ...[0 5.0 * ............................ IIII ......... TTTTT N RN UR
ilIulIIIIIIIII__IIIIIIuIIIIIIIIquI Wrrrrrrrrrrrrrrrrrrr@rorrrrry IIIIIIIIIIIIlillllilluuulllllllllll rr

I

ﬂllulllIIIIIllaullllllullllllglluul ﬂ AUV VA guuuuupuaaupuuung U U U U U e e N N N N NN N T U U U NN rr
& v v r By By B Apupuugaupuuuuy ulllu uuu ullluuuulllu upg uulllillllllllllllllu rrrr R

.................................................. ¥..§ RURUURERU

Nuuulyl UUNR .m ........................ .. NURUURERU

UUU U UU '*" I’I’I uuu I”’-Illlllll-llllll Illclgllllllllllll uuu IIIIIII I
RuuuRyl UU * N | uy| . NURUNU URS U S

UUUU h " .. II"'I II’II’IIIIIIIIIIIII rrrrrrrrrrur III””’IIIIIIII rrr
.................................. NUNUNU URS U ) | IS I U N U
................................... ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, v

Irrrrr.“rrrrrr'ﬂrr rrrrrrrrrrr rrrrrr rrrrrrrrr 2 II rrr. uuuuu Irrr..rrrrrr ’ rrrrrr
””””””””’Ia’”””””””””””””””””’Ia””’””””””””””’a

e B r rrrrrrrrrrrr
segRegex#3; Incl .* Excl "“$ N: 4; re: cg

tgggtgataccgtgtcaacgcagtttcatcaactgtaacatgtaaccctectggtgggegtgtggatagagggggagtctgtgggtgtctggggacagecgggtacctgggaactctgcactcaccattcagttttgttgggaacctaaaactgete
5560313 5560323 5560333 5560343 5560353 5560363 5560373 5560383 5560393 5560403 5560413 5560423 5560433 5560443 5560453 55604
chr7:5560313-5560467; 155 bp; 1.0 bp/char; Mem: 513 MB /\





_images/chr1_996137-1003137.png
wgEncodeSydhTfbsGm10847NfkbTnfalggrabPk.narrowPeak.gz#1; Incl .* Excl "$ N: 1

wgEncodeSydhTfbsGm10847NfkbTnfalggrabSig.bigWig#2; ylim[0.0 50.0]; range[0.0 37.96]

ngncodeSythfbsGml2892Pol2Iggmust narrowPeak gz#3; Incl .* Excl "$ N: 1
I

I
wgEncodeSydhTfbsGm12892Pol2IggmusSig. blngg#4' yllm 0.0 50.0]; range[0.0 134.91]

996137 996890 997642 998395 999148 999900 1000653 11001406 1002159 1002
chr1:996137-1003137; 7,001 bp; 74.5 bp/char; Mem: 168 MB






_images/matches.png
Homo sapiens.GRCh38.86.chromosome.8.gff3.gz#1; Incl \tgene\t.*ENSG00000168487 Excl "“$ N: 1
BMP1_GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
segRegex#2; Incl .* Excl “$ N: 5; re: TATA[AT]AA
> > < <
22152893 22152900 TATAAAA .
22160444 22160451 TATAAAA .
22171756 22171763 TATAAAA .
22172793 22172800 TATAAAA .
22174801 22174808 TATAAAA . -
22152751 22155339 22157926 22160514 22163101 22165689 22168276 22170864 22173451 2217
8:22152751-22176815; 24,065 bp; 256.0 bp/char; Mem: 461 MB

00 00 0O 0 0
I+ + +1V





_static/ajax-loader.gif





_images/leishmania_find.png
Leishmania major.ASM272v2.31.gtf.gz#1; Incl \ttranscript\t Excl "$ N: 1
LmjF.36.TRNAGLN.O01:tRNA tttttttttttttttttttttttttttttttttttttttttttttttt

1607643 1607653 1607663 1607673 1607683 1607693 1607703 1607713 1607723 1607733

1607
36:1607643-1607746; 104 bp; 1.0 bp/char; Mem: 246 MB





_images/leishmania_transcripts.png
781

EEEEODLoOLEoNEeE@eS EE @ 8@ 00 deE e E e e I @ E DL OdEdeEE EE e EE EE 8B EE B B
EEEIDEDNEEDEEEE S EEHDEDDEREEEEEDDEDEDDDEEEEEREEEEEEEEEE

Leishmania major.ASM272v2.31.gtf.gz#1; Incl \ttranscript\t Excl "$ N

EEEHE OEQEODLEEEEENDELEOHECE EE EE e L D dEEEEeEE EE BEE EE B B & &
Bt @ & @I @ B I D EE B E & @ & g EC 8B & & I d B I @ @ B EE EE EEE EE B B & &

EEEIDEDNEODEEEE S EDDEEREEREEESEEDDEDDDEDEEEEREEEEEEEE E E
EEEHLl IEdEDEEE 8 E . HEQdEeEEE B 0L deEdoEEEEeeEE EE B E e E L @ @ @
EEEHLE I EEDEEEEELDHDEEDEEEEEEE DD HDEDDEDEEREEE EEEEE EE E B B
EEE Ll oS0 CdeE e @ & I BEEEEEE EE @0l B0 dEdEEEEREEEEEREERE E
EEEHE @ O0EdESE & @ 0@ D@D EEEEEEEHDE DD G EEEEEEEEEEEEE B B8 8

EEEHLI o BN MmEE &I 0 Dl EEEEEEE DD dEDEDEEEERE B8 EE EE L @8 & &8

I o EE EEE B EEEE B 8 8 B

I EEE B B8 I i DEEEEE EE @B @
I CIDEE g &L OECE DG EE B8 8 8 @ @ B @

TT T T

E
E
11

E
E
E
Bt & B

EEE EEEEEE B EEEE E E

Il DB B8 E &8 & &

gD g B

EE B E

EEE g I &8 & EE & &8 & @ B

EEE B8 B8 E E & B

et

EEEED @ @D

EEEHE @B @

Et

|

E

E
E E B8

et

E
E

E g B
g g B
TT TT

Ll g BB E O E @
Il B EE & @B @

1]

E
E
E
E
E

E
E

E

E E

B

I g B8 E g &80

E

BE & @&

Et

Et

E
BE g @

tt

1]

TT

Et

Et

PPPPD

BHEHBE

865211 1153614 1442017 1730420 2018824 2307227 2595
28533.5 bp/char; Mem: 224 MB

576807

288404

2,682,151 bp;

1-2682151;

36





_static/comment-bright.png





_images/actb_bam_gtf.png
CAACTAAGTCATAGTCCGCCTAGAAGCATTTGCGGTGGACGATGGAGGGGCCGGACTCGTCATACTCCTGCTTGCTGA
ds051.actb.bam@2; -F4 -f0 -g0
c actaagtcatagtccgcctagaagcatttgcggtggacgatggaggggeccggactecgtcatactecctgettgetg

CAACTAAGTCATAGT CGCCTAGAAGCATTTGCGGTGGACGATGGAGGGGCCGGACTCGTCATACTCCTGCTTGCTGA

CAACTAAGTCATAGTCCGC GGTGGACGATGGAGGGGCCGGACTCGTCATACTCCTGCTTGCTGA
caactaagtcatagtccgce TGGAGGGGCCGGACTCGTCATACTCCTGCTTGCTGA
CAACTAAGTCATAGTCCGCCTAGAAGCATT GCCGGACTCGTCATACTCCTGCTTGCTGA
CAACTAAGTCATAGTCCGCCTAGAAGCATTTGCGGTGGAC tcatcctecctgettgetga

caactaagtcatagtccgcctagaagcatttgecggtggacgatgg

caactaagtcatagtccgcctagaagcatttgecggtggacgatggaggggeccggactecg

CAACTAAGTCATAGTCCGCCTAGAAGCATTTGCGGTGGACGATGG
CTAAGTCATAGTCCGCCTAGAAGCATTTGCGGTGGACGATGGAGGGGCCGGACTCGTCATACTCCTGCTTGCTGA

hgl9 genes.gtf.gz#3; Incl .* Excl "“$ N: 3

NM 001101 eeeceeceececececeeceececeeceececececececeeceeceeceeeeeeeeeceeceeceeceeceeceeceeceeceeeeeee

222

NM 001101 _ccccececececccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
chr7 unknown exon 5566779 5567522 . - . gene_id "ACTB"; transcript_id "N
chr7 unknown stop_codon 5567379 5567381 . - . gene_id "ACTB"; transcript_id "N
chr7 unknown CDS 5567382 5567522 . - 0 gene_id "ACTB"; transcript_id "N
5567360 5567370 5567380 5567390 5567400 5567410 5567420 5567430

chr7:5567360-5567437; 78 bp; 1.0 bp/char; Mem: 187 MB





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          ASCIIGenome: Text only genome viewer!
        


        		
          Description
          
            		
              Getting help
            


            		
              How to cite
            


            		
              Credits
            


          


        


        		
          Installation
          
            		
              Quick start
            


            		
              With conda
            


            		
              With Homebrew
            


            		
              A little more detail
            


            		
              Compiling the source code
            


          


        


        		
          Input and output
          
            		
              Input file formats
              
                		
                  Handling large files
                


              


            


            		
              Setting a genome
              
                		
                  Reference sequence
                


              


            


            		
              Output
              
                		
                  Formatting of reads and features
                


                		
                  Title lines
                


              


            


            		
              Saving screenshots
            


          


        


        		
          Usage
          
            		
              Quick start
            


            		
              Interactive commands
            


          


        


        		
          Examples
          
            		
              Video clips
            


            		
              Why the command line
            


            		
              Open and browse
            


            		
              Finding & filtering stuff
              
                		
                  Advanced filtering with awk
                


              


            


            		
              Batch and non-interactive mode
            


            		
              Finding sequence motifs
            


          


        


        		
          FAQ and miscellanea
          
            		
              Can I change colour theme / Can I use my configuration?
            


            		
              Can I turn off case sensitivity?
            


            		
              Why reads and coverage in bam tracks sometimes disappear?
            


            		
              Can I execute multiple commands inside -x/–exec or at the command prompt?
            


            		
              How can I print the header of a VCF file?
            


          


        


        		
          Command reference
          
            		
              Navigation
              
                		
                  goto
                


                		
                  INT
                


                		
                  PERCENT
                


                		
                  plus +
                


                		
                  minus -
                


                		
                  f - forward
                


                		
                  b - backward
                


                		
                  ff
                


                		
                  bb
                


                		
                  ]
                


                		
                  [
                


                		
                  zi
                


                		
                  zo
                


                		
                  extend
                


                		
                  l - left
                


                		
                  r - right
                


                		
                  p
                


                		
                  n
                


                		
                  next
                


              


            


        